
Roads Paved for Reuse in Software Engineering.
#1.N.Krishna Chythanya, #2. Prof. Dr.Lakshmi Rajamani

#1.Asst.Prof.,C.S.E.,G.R.I.E.T.-Hyd,India.
#2. Retired Professor,C.S.E.,O.U.-Hyd,India

Abstract: This is a research paper which through some light
on research work carried out by different researchers in the
area of RESUABLE COMPONENTS of Software
Engineering. As The time has come for institutionalizing of
software reuse as an enduring part, Reuse needs to be treated
as an integral part of engineering and acquisition activities. A
few reusable component repositories have been discussed and
also Identification process followed by a set of researchers
have been discussed.

Keywords: Reuse, component, Reusable component
Repository, Software Engineering.

1.INTRODUCTION:
As per the literature , we can consider the discipline of
Software engineering to be born when “Software
Engineering Crisis” was coined in 1968 at the NATO
conference, Germany. The main concern being effective
development of very large and highly qualitative software
systems.
The time has come for a shift in paradigm from current
practices of software engineering and development to a
process of software engineering in which institutionalizing
of software reuse becomes an enduring part . Reuse needs
to be treated as an integral part of engineering and
acquisition activities.
A software component is defined as an independent
object or the characteristic object that can be deployed
or integrated in an application so that the development
process will be improved. The collection of all reusable
components are stored in a library or repository.
There is no indispensible meaning for a module to be
considered reusable . The programming language used has
a high influence on the reusability of the component. In
general people overlook the need of factor of code that is
used for making module robust with proper Exceptional
Handling in case of rare input and behavior.
Based on reusability Software Engineering is divided in to
Domain Engineering and Application Engineering.
Creation and storing of component for reuse is taken care
in Domain Engineering where as during Application
engineering required component is selected from the reuse
library and is used according to the needs or requirements.
Different aspects of software reuse explored by research
studies and reports over the years are: how does reuse
happen, artifacts reused, affects on development cost,
quality, languages support, impact of training developers to
reuse.
The remaining part of parper is categorized as Section 2
summarizes Related work done in the direction
understanding reuse activity and its goals, Section 3 deals

with processes implemented for constructing different
Repositories with a few example repositories and Section 4
emphasizes work done in component identification and
experience of developers in using reusable components.
Section 5 deals with Retrieval mechanisms followed by the
researchers and Section 6 concludes our work.

2.RESEARCH CARRIED OUT PREVIOUSLY:
 Reuse is a process of creating a solution to a
problem based on existing solutions of its sub problems.
The reuse activity can be divided in to following major
steps performed at different phases in preparation for the
next phase.[29].

1. Reuse Strategy Development after analyzing the
problem and available solutions of its sub
problems.

2. Make out a solution structure for the problem
following the reuse plan.

3. Reconfigure the solution structure to the
possibility of using predefined components
available at the next phase.

4. Obtaining, instantiating and altering predefined
components.
Integrating the components into products for this
phase and evaluating the products.

The specific cost effectiveness and productivity goals are
met with Reuse libraries ,which are organized of tools,
personnel procedures, components of software that
facilitates software reuse .Typical libraries has the
following capabilities:

 Browsing , probing and retrieval can be carried on
using GUI of a Automated Library System.

 A framework for standard components.
 Each Domain would be effectively classified.
 Detailed documentation of system and component.

It is also desirable to have a support to transform, adapt or
specialize the components. Also , for the system to be used,
it should be readily available for the developers and must
support access from a variety of platforms.
In order to avoid frustration and delay for the user , the
library should implement a way to categorize reusable
components, irrespective of the tool being used.
Standard component frameworks help ease the process of
comprehension and comparison of similar components, and
include data such as relative numeric measures for
reusability, reliability, maintainability and portability [5].

N.Krishna Chythanya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 2075-2079

www.ijcsit.com 2075

Besides the above, The system development and
acquisition process must integrate library capabilities and
procedures and Specific requirements of security and
integrity should be identified and supported and also among
diverse library systems the intercommunication and
interoperability must exists.
The library must gather and analyze the usefulness of its
reusable components, their accuracy, and library’s general
responsiveness as per needs of users, In order to measure
reuse access.

3. REUSABLE SOFTWARE COMPONENT REPOSITORIES[33]:

Lets take a look at a few commercial repositories..
Reuse Library Toolset (RLT):: In 1994 , the commercial
release of RLT was announced by EVB Software
Engineering Inc.. Independent of development process,
design method and programming languages used reusable
assets can be managed and created using this system. To
represent all life-cycle assets RLT employs the Extended
Faceted Classification System, controlled keyword,
attribute value (frames), and asset interdependencies. It
provides ability to exchange library information across
multiple platforms and databases, and also provides library
metrics, client-server architecture. The multiple platforms
supported includes DEC Alpha,
Sybase,HP/UX,Oracle,Informix,OSF1 and in 1995
additional platforms like Windows 3.1/NT and OS/2 were
also supported.
The Universal Repository:: This system is based on the
object oriented principles and was developed by UNISYS.
At the core of this repository is the Repository Services
Model (RSM) - which can encompass representations of all
tools, database management systems (DBMSs),
programming languages, business rules, and data. Based on
the structures provided in the RSM, customers can add their
own models to extend the repository. Customers can
develop, validate, and verify a component for use in one
product. Customers can quickly adapt with this new
technology with the support and training available in this
system. The repository promotes reuse by providing a
shared catalogue of all software components. A single
change to correct a defect in a reused component is
reflected in all tools using that component. Such
consistency among products ensures their integration and
interoperability when you port them different operating
systems.
+1 Reuse Repository: Presently running on SUN
Workstation platforms, it was developed by +1 Software
Engineering Co. in California. Its GUI is based on Open
Windows, Motif and CDE ,and Solaris operating system.
User-Defined Reuse library, Filtered reuse library and
selective Reuse are three forms of reuse supported by this
system. Project wise “Filtered components” are maintained
by it. Selective reuse significantly improves a user’s ability
to reuse all source code and documentation from all
previous projects and at any granularity. This system
supports at all levels of software development life cycle
including Design, Code, Test cases , Shell scripts of tests ,
modeling information and even expected results.

AIRS:: E.J. Ostertag, J.A. Hendler,R. Prieto-Diaz, C.
Braun [7] developed an AI-based library system for
software reuse- called as AIRS. In this system a
component is described by a set of (feature, term) pairs. A
feature represents a classification criterion, and is defined
by a set of related terms . It also allows representation of
packages with features. Degree of similarity between their
descriptions and a given target description decides the
candidate component from library for reuse in this system.
A non-negative magnitude called distance represents the
expected effort required to obtain the target given a
candidate is used as a quantifier for similarity.
Subsumption, closeness, and package comparators are three
functions used to compute Distances in this system.
Software Asset Library Management System
(SALMS):: SALMS is a system for classifying, describing,
and querying reusable assets [6]. The lack of visibility of
reusable assets is the common inhibiting issue among the
developer community. Such a problem can be solved using
a central repository. The gap between development for and
with reuse respectively is filled by the SALMS. It is easily
accessible by all developers as it can be distributed over
network or unix workstations. It has a webtechnologies
based GUI.
Automated Software Reuse Repository (ASRR):: It is a
searchable repository of reuse information. The
administration tool and Reuse repository are the main
components of this. The administration portion of the tool
performs user administrative functionality including: the
ability to add, delete, or change users and their attributes.
The attributes include the following: security levels, group
and security permissions to add, edit and delete modules.
The reuse repository allows the user to upload modules and
store them in a searchable repository. The following
functions are provided by ASRR:: Easy access to reuse
items, reuse information readily available for users,
Program Control, Protection & Security.
HSTX Reuse Repository:- The HSTX reuse repository
was developed by Hughes STX Corporation. The
mechanisms are designed so that users can search/browse
the contents of the Reuse Repository for what they need
and submit contributions to the reuse repository librarian
through WWW pages.
Apart from the above certain Government Repositories
include:Defense Software Repository System (DSRS),
Library Interoperability Demonstration (LID), Integrated -
Computer Aided Software Engineering (I-CASE).
Multimedia Oriented Repository Environment (MORE).
Asset Source for Software Engineering
Technology(SAIC/ASSET).The Public Ada Library
(PAL).The Ada Library and the Reuse Library at the
Defense Information Systems Agency (DISA),CAPS
Software Reusable Component Repository.

4.WORK RELATED TO COMPONENT IDENTIFICATION

AND EXPERIENCES OF REUSE:
Providing a best quality product with in the least time is the
biggest challenge that organizations are facing today. The
cost increased very high, when, to deliver high quality
product in less time, if more developers and experts are

N.Krishna Chythanya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 2075-2079

www.ijcsit.com 2076

hired. The making of decision in component selection, to
start from a particular point to get the best result is the
most complex thing.
Customers need to visit all repositories in order to select the
best qualifying component from the different repositories
available for reusable components .[35] SRSCS’s main
purpose is to provide a single point of the access to the
customers from where they can select their required
component instead of visiting all the repositories one by
one. Functional requirements of the component as
described by the owner organization are taken as basis for
selection of reusable component in SRSCS. SRSCs process
consists of extraction, transformation, Loading and
component selection steps.
TeraData is chosen for implementation in [35] because of
the reason that heterogeneous sources like flat files,
RDBMS are used to extract information and then ,after
transformation ,the data is loaded in to single repository.
The work is based on ETL i.e. Extraction, Transformation,
Loading.
 William W. Agresti [31] has conducted a survey of 128
developers to explore their experiences and perceptions
about reuse of code and to emphasis on reuse as a source of
cost savings in software development. They stress that
availability, awareness, accessibility and acceptability are
the four conditions for any organization to obtain benefits
of reusing code.
The motivation for [31] is that if we improve our
understanding of developers’ experiences and perceptions
regarding reuse, we may identify ways to increase reuse,
and, by doing so, further reduce the cost of software
development. “It is imperative to understand the behavior
of software developers. The key to successful reuse
programs obviously depends on its acceptance by the
users.”[1]. Where as [6], analyzes data from a development
environment that classified modules by the reuse
categories of: Verbatim, Adapted, Rebuilt and Newly
Developed. [31] followed an approach of “4A” model
based on sequence of conditions that must meet for reuse to
occur. Availability, Awareness, Accessibility,
Acceptability. Reuse cannot occur if any of the above 4
conditions are not met. In the other way they act as
impediments for the occurrence of software reuse.
Standish and Thomas [8] presented a paper on, “An
Essay on Software Reuse”. This paper explored basic
software reuse concept and discussed briefly what
economic incentives were used for software system
generation so that the software reusability will be
improved.
Arnold [18] [17] mentioned a number of heuristics that can
be used for locating reusable components in the Ada
source code.
The work of Mikael et al [40]is based on the component
metadata automatically retrieved from development tools.
Idea of improving test phase using meta data is extended to
cover the whole component development phase. Resusing
of tests as specifications and results in metadata instead of
executable test cases is done. But the work is not applicable
where inheritance relations of Object Oriented approaches
may affect the storage structure.

5.RETRIEVING REUSABLE COMPONENT:
 To enhance retrieval an automation retrieval of
software components was proposed by Luqi and Guo
[9] through their paper “Toward Automated Retrieval
for a Software Component Repository”. The paper
discussed the improvement of over existing software
component system using signature matching and provide
profile based match for effective development to the
system is obtained.
In [36] a component retrieval system for reuse process is
proposed with integration of facet attributes for fetching
process. Metadata repository integrates expert knowledge
of correlative domains and generalizes crucial concepts
and relations among concept in this domains.
The precision of software component retrieval is poor as a
result of subjective factor in faceted classification retrieval
in case of software component retrieval based on faceted
classification.
A Survey For Effective Search And Retrieval Of
Components From Software -Repositories [30] paper
presents a survey about the main research on effective
search and retrieval of components and on various software
repositories.
Various retrieval techniques are enumerated classification,
facets, frame based classification; free-text indexing and
relational databases have been employed to address the
problem of finding relevant components[21]. But issues
involving how effective repositories are built and populated
have received considerable less attention in the recent past.
This work in [21] aims at summarizing the state of the art
in software reuse repositories research by proposing
answers to the following questions: requirements of
software reuse repository, design aspects of repository,
approaches for constructing effective repository ,
challenges faced while searching components and
challenges faced while retrieving the components. The
work throws light on Codefinder-PEEL repository that was
outlined by Scott henninger in 1996. And also Code Broker
which is an active and adaptive reuse repository system
developed by Yunwen Ye in 2001 to assist java developers.
It also speaks about John Grundy’s aspects based indexing
work in 2001 named as ASPECT BASED COMPONENT
REPOSITORY, which is primarily a facet based approach.
The work also mentions about Jiyun Lee, et al worked out
in 2003 to build a component repository for facilitating
EJB. The repository was CRECOR(Component Repository
for Facilitating EJB Component Reuse) Component
Repository.Portability, Flexibility , Understandability and
Confidence are the four listed reusability factors by the
ESPRIR-2 project called REBOOT(Reuse Based on
Object-Oriented Techniques).
Paper by Subedha[38] reported on going work of them
which adopted quality hierarchy method for determining
reusability factor to make quality assessment more
effective. Time , reuse frequency, usefulness quality factors
based context specific level model of reusability was
proposed. It proposed a dynamic approach to analyze the
component for reusability.
 The modeling for reusability has been addressed by only a
few researchers in the past The contribution of metrics to

N.Krishna Chythanya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 2075-2079

www.ijcsit.com 2077

collectively determine reusability is still a big research
area.
Function based software systems’ reusability prediction
using Expectation Maximization based clustering was
proposed by Himani Goel and Gurbhej Sing[8]. In this
coupling, Cyclomatic complexity , volume, regularity,
reuse frequency are the metrics used for measuring
reusability of component.
Parvinder & Shalini [10] proposed particle swarm
optimization technique along with the four variations of
conjugate gradient algorithm to train the feed forward
network. The performance of the trained neural network is
tested to evaluate the reusability level of the procedure
based software system.
P.Shirisha et al.. worked on code level optimization with
creating a function module in ABAP to check for
optimization of any code written in ABAP.
Where as [11][12][18][19][32][34][37][39] work in the
area of applying neural networks, artificial intelligence
Genetic algorithms etc in reusability identification and
component identification from repository.[27] implements
their work in the form of a suffix tree based component
representation in a tree model. The pruning over the
keyword list is performed at each level and the suffix tree
consists of various levels.
To get the components or code from the library, it is
required to know architecture of the software thoroughly.
But to build such architectural overview the first
requirement is to retrieve the component information from
the software product. This information is collectively called
the software ontology.
Lucredio et al. [10] presented a paper, “Component
Retrieval Using Metrix Indexing”. If the software
repositories have a large number of stored components,
then efficient retrieval of these software components from
the development modeling to the system. To make the
retrieval process more efficient, the scenario specific
search mechanisms are defined.
Qualitative and Empirical are basically two approaches to
evaluate software. Module designed factors and module
implementation factors are two categories of factors
identified by selby in his recent experiments that
characterize successful reuse based software development
of large systems.
The module design factors that characterize module reuse
without revision were: low coupling, high cohesion, few
input-output parameters, few reads and writes and many
comments. Where as Source lines, low cyclomatric
complexity are the module implementation factors. It was
observed that modules used without revision had the
fewest faults and subsequently lowest fault correction
effort.
Chen and Lee[16] found that lower the value of the
software complexity metrics, the higher the programmer
productivity from the controlled experiment they
conducted on 130 reusable C++ components developed by
them, in order to relate level of reuse in a program to
software productivity and quality. The software metrics
collected included Halstead size, volume of program,
program level, effort and estimated difficulty.

Vijayan et. al. have given some different touch to
component selection and they used domain model and
object libraries to identify software components [20]. But
unfortunately this method doesnot provide any functional
information for decision making about component
selection. It implements keyword, based approach,
retrieved from the user’s query written in Natural
Language.
The above approaches does not provide the solution that
how to select best qualifying component among the
available different repositories and how to compare
components with each other if there are more than one
component developed for the same purpose by different
organizations.
The effort needed to modify a component as reflected by
the number or percent of operations to add or modify was
suggested as a reusability metric by Woodfield,Embley and
scott after conducting an experiment to asses the
reusability of an ADT in 21 different languages by 51
developers.
Program size, structure of program, documentation and
language used to code and the reuse experience are the five
metrics identified by Prieto-Diaz and Freeman for
evaluating reusability and the process is an Empirical
method.
Caldiera and Baili state that the basic reusability attributes
depends on qualities of correctness, readability, testability,
ease of modification, and performance as we cannot
calculate these directly, they propose 4 candidate measures
of reusability such as: Halstead’s program volume, Mc
Cabe’s Cyclomatic complexity, Regularity and Reuse
frequency.
Function, form and similarity are the three approaches
discussed by Hislop[26]. The prototype tool developed
“Softkin” consisted of a data collector and a data analyzer.
The collector parses the software and calculates measures
of form for each module. The analyser computes the
similarity measures based on a variety of form metrics
such as McCabe Complexity and structure profile metrics.
As most of the methods focus specially on internal
characteristics of components and environmental factors
are ignored ,Poulin[29].. challenged reusability researchers
for domain attributes to be incorporated in to software
metrics. A critically important factor to find reusability of a
component is its application domain, this point is focused
in their work. There was a requirement of finding domain
knowledge and required artifacts in an economical way.
The success of component is the possible best measure for
a component’s reuse..
The study done by Lin and Clancy showed that a standard
layout can be used by a potential user to quickly scan the
important aspects of a component such as implementation
information, text description, illustrations and pseudo code
In order to know where to make changes to improve reuse
the following things can be helpful: Detailed comments,
better prologs, and better online and off line tools and
access to persona with required knowledge.

N.Krishna Chythanya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 2075-2079

www.ijcsit.com 2078

6. CONCLUSION:
The paper is a part of ongoing research by us in
Identification of Reusable component using neural
networks and in this we summarized the previous work that
was done in the area of Reuse, what is reuse, how people
worked on to identify reusable components etc. It is
evident that still there is a lot of scope for improvements in
the mechanisms being implemented for reusable
components creation, identification and maintainance. This
work does not emphasis on application of neural networks,
which we would like to present as a separate paper.

REFERENCES:
1) Wahlster W., "Einführung in die Methoden der Künstli-chen

Intelligenz," University of Saarbrücken, Germany, Lecture Notes
2002.

2) Wachsmuth I.,"The Concept of Intelligence in AI," in Prerational
Intelligence-Adaptive Behavior and Intel-ligent Systems without
Symbols and Logic , vol. 1, The Nether-lands: Kluwer Academic
Publishers, 2000, pp. 43-55.

3) Winston P. H., Artificial intelligence , 3rd (repr. with corrections
1993) ed. Reading, Mass.: Addison-Wesley, ISBN: 0-201-53377-4,
1993.

4) Pozewaunig H., Mining Component Behavior to Sup-port Software
Retrieval. PhD Thesis. Institut für Infor-matik-Systeme der Fakultät
für Wirtschaftswissen-schaften und Informatik, Universität
Klagenfurt, Kla-genfurt, 2001.

5) J. Penix and P. Alexander, ``Design representation for automating
software component reuse,'' in Proceedings of the first international
workshop on Knowledge-Based systems for the (re)Use of Program
libraries, Nov. 1995.

6) Elisabetta Morandin, “SALMS v5.1: A System for Classifying,
Describing, and Querying about Reusable Software Assets”, The
Proceedings of ICSR '98.

7) G. Arango and R. Prieto-Diaz, "Domain Analysis Concepts and
Research Directions", Domain Analysis and Software System
Modeling,sIEEE Computer Society, 1991.

8) Standish,T., and Thomas,A., “An Essay on Software Reuse”, IEEE
Transactionsonsoftware engineering,Vo l. SE-10, No. 5, pp. 494-497,
1984.Luqi.,

9) Retrieval for a Soft ware Component Repository", Proceedings of
IEEE International Conference and Workshop on ECBS, pp. 99-
105, 1999 .

10) Lucredio,D., Gavio li,A., Prado,A.F., and Biajiz,M., “Component
Retrieval Using Metrix Indexing” ,IRI, Proceedings of IEEE
International Conference ,pp. 79-84, 2004.

11) C. Veras,R., and Silvio,L., “ Comparative Study of Clustering
Techniques for the Organization of Software Repositories”,,Vo l.
1,pp. 210 -214, 2007.

12) Dixit,A., and Saxena,P.C., “ Software Co mponent Retrieva l
Using Genetic Algorithms” International Conference on Co
mputer and Automation Engineering © IEEE, ISBN: 978-0-7695-
3569-2, pp. 151-155, 2009.

13) Ichii,M., Hayase,Y., Yoko mo ri,R., Yamamoto,T., and Inoue, K.,
“Software Component Recommendation Using Collaborative
Filtering”, SUITE, ISBN: 978-1-4244-3740-5, pp.17-20, 2009

14) Viana, T.B., Nobrega, H.I., Ribe iro, T., and Silveira, G.,“A Search
Service for Software Components Based on a
Semi-Structured Data Representation Model”, 6th International
Conference on Information Technology: New Generations ©
IEEE, ISBN: 978-1-4244-3770-2, pp. 1479 -1484, 2009.

15) Aboud,N.A., Arevalo,G., Fa lleri,J-R.,Huchard,M., Tibermacine,C.,
Urtado,C., and Vauttier,S., “Automated Architectural Co mponent
Classificat ion using Concept Lattices”, Software Architecture &
European Conference on Software Architecture WICSA/ ECSA
@2009 IEEE, ISBN: 978-1-4244-4984-2, pp. 21-30, 2009.

16) Chen, Y.F.Nishimoto, M.Y.andRamamoorty, C.V. “The
CInformationAbstractionSystem”,IEEE Trans. on Software
Engineering, 16, No. 3, March 1990.

17) “Software Reusability and Efficiency: A Scientific And
Technological Study”, Undertaken by Parallab, Bergen Center for
Computational Science, University of Bergen (Norway) for the Enacts

Network, Sectoral Report,FinalVersion-April2004,
http://www.enacts.org.

18) Maxym Sjachyn, Ljerka Beus-Dukic, “Semantic Component Selection
– SemaCS”, 2006

19) Vijayan Sugumaran, Veda C. Storey, “A Semantic-Based Approach to
Component Retrieval”, 2003.

20) Vijayan Sugumaran, Mohan Tanniru and Veda C.Storey, “Identifying
software components from process requirements using domain model
and object libraries”, 1999 .

21) Scott Henninger, “Supporting the Construction and Evolution of
Component Repsitories”, IEEE, 1996, pp-280-286.

22) Pennell, James P., “An Assessment of Software Portability and
Reusability for the WAM Program,” Institute for Defense
Analysis, Alexandria, VA, October 1990 .

23) Halstead, Maurice H. Elements of Software Science. Elsevier
North-Holland, New York,1977.

24) Zhuo, Fang, Bruce Lowther, Paul Oman, and Jack Hagemeister,
“Constructing and Testing Software Maintainability Assessment
Models,”Proceedings of the IEEE Computer Society International
Soft-ware Metrics Symposium,Baltimore, MD, 21-22 May 1993, pp.
61-70.

25) Mayobre, Guillermo, “Using Code Reusability Analysis to
Identify Reusable Components from the SoftwareRelatedto
anApplication Domain,”(WISR'91), Reston, VA, 18-22 November
1991.

26) Hislop, Gregory W., “Using Existing Software in a Software
Reuse Initiative,” (WISR'93), 2-4 November 1993, Owego, New
York.

27) Kanwaljeet Sandhu, Trilok Gaba,-A Novel Technique for
Components Retrieval from Repositories -- COMPUSOFT, An
international journal of advanced computer technology, 3 (6), June-
2014 (Volume-III, Issue-VI).

28) Ajay Kumar, -MEASURING SOFTWARE REUSABILITY
USING SVM BASED CLASSIFIER APPROACH --- International
Journal of Information Technology and Knowledge Management
January-June 2012, Volume 5, No. 1, pp. 205-209.

29) Jeffrey S. Poulin, Loral Federal Systems–Owego -Measuring
Software Reusability-. Proceedings of theThird International
Conference on Software Reuse, Rio de Janeiro, Brazil, 1-4 November
1994.

30) Amandeep Bakshi, Seema Bawa,--ASurvey For Effective Search And
Retrieval Of Components From Software -Repositories,IJERTVol.2
Issue4,April– 2013.

31) William W. Agresti- Software Reuse: Developers’ Experiences and
Perceptions-. Journal of Software
EngineeringandApplications,2011,1,4858.Published
OnlineJanuary2010 (http://www.scirp.org/journal/jsea).

32) Artificial Intelligence and Software Engineering: Status and Future
Trends --Jörg Rech, Klaus-Dieter Althoff

33) Jiang Guo, Luqi --A Survey of Software Reuse Repositories--.
34) G. Boetticher, K. Srinivas, D. Eichmann --A Neural Net-Based

Approach to Software Metrics -.
35) SINGLE REPOSITORY FOR SOFTWARE COMPONENT

SELECTION (SRSCS): A REUSABLE SOFTWARE
COMPONENT SELECTION TECHNIQUE --YOUNAS WAHAB,
MUHAMMAD IMRAN BABAR,SHAHBAZ AHMED

36) Optimal Component Software Development based on Meta Data
Repositories -Tamanna Sood, Dr.Rajiv Mahajan - IJ ARCSand
software Engineering. Volume 4, Issue 2, February 2014. ISSN: 2277
128X.

37) Identification of Object Oriented Reusable Components Using
Multilayer Perceptron Based Approach --Shamsher Singh,
Pushpinder Singh, and Neeraj Mohan .-ICCEMT'2012 Sept8-9, 2012
Bangkok

38) PROCESS MODEL FOR REUSABILITY IN CONTEXT-SPECIFIC
REUSABLE SOFTWARE COMPONENTS V. Subedha, Dr. S.
Sridhar. IJCSE, Vol. 3 No. 1 Feb-Mar 2012. ISSN : 0976-5166

39) Integrating Matlab Neural Networks Toolbox functionality in a fully
reusable software component library—Arturo,
Emilio,Lado,Jacinto.Manuael—Springer,Neural Computational and
Applications,2007.

40) A model for reuse and optimization of Embedded
SoftwareComponents-Mikeal,Joakim,Kristian-proceedings of the ITI
2007 29th International Conference on Information Technology
Interfaces, June 25-28, 2007.

N.Krishna Chythanya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 2075-2079

www.ijcsit.com 2079

